öffentlich Stand: 10/2025

"Chemie ist die Wissenschaft von den Stoffen, ihren Eigenschaften und den Veränderungen, die sie erfahren." – Justus von Liebig

Chemie begleitet uns in jeder Lebenslage, ob wir sie nun wahrnehmen oder nicht. Ausgehend von alltäglichen Beobachtungen und Erfahrungen gehen wir Stück für Stück immer tiefer in die Materie hinein, um auf atomarer Ebene unseren Alltag besser verstehen und erklären zu können. Hierbei stehen die Experimente im Mittelpunkt eines an Forschungsmethoden orientierten modernen Unterrichts.

Die Rahmenbedingungen für den Chemieunterricht in Schleswig-Holstein werden durch die Fachanforderungen¹ vorgegeben. Das schulinterne Fachcurriculum stellt die Konkretisierung für die individuelle Schule dar. Auf Grundlage dieser beiden Dokumente gestaltet jede Lehrkraft ihren Unterricht. Das schulinterne Fachcurriculum wird durch die Fachschaft fortlaufend evaluiert und weiterentwickelt.

Rahmenbedingungen Chemieunterricht an der KKS

Stundentafel

Der Chemieunterricht beginnt an der KKS in der 8. Klasse im 2. Halbjahr.

• Chemieunterricht in der Sekundarstufe I (Wochenstundenzahl):

Klasse 8	Klasse 9	Klasse 10
1. HJ: 0	2	2
2. HI: 2	2	2

Chemieunterricht in der Sekundarstufe II (Wochenstundenzahl):

Klassen- stufe	Chemie-Profil	Chemie auf grundlegendem Niveau
E	4	3
Q1	5 + 3 Profilseminar	3
Q2	5	3

¹ Zu finden unter https://fachportal.lernnetz.de/sh/faecher/chemie/fachanforderungen.html (22.09.2025)

Verwendete Lehrwerke

In der Sekundarstufe I und in der Sekundarstufe II wird mit einem Lehrbuch ergänzend zum Unterricht gearbeitet. ("Fokus Chemie SI, allgemeine Ausgabe des Cornelsen-Verlages bzw. "Fokus Chemie SII, allgemeine Ausgabe)

In der Oberstufe können den Schülerinnen und Schülern kostenpflichtige Jahreslizenzen der vorliegenden Bücher als E-Books angeboten werden.

Hinweis zur Formelsammlung

Die Nutzung des Formeldokuments des IQB im Abitur ist vorgeschrieben. Im Chemieprofil findet die Einführung dieser im E-Jahrgang statt. Hierfür ist es vorgesehen, dass sich die Schülerinnen und Schüler eigene Formeldokumente anschaffen und sich in diesen Notizen machen dürfen. Für die Klausuren insbesondere Abiturklausuren sind Formeldokumente in der Sammlung vorhanden.

Grundsätze zur Leistungsbeurteilung

In der **Sekundarstufe I** werden bis einschließlich der Klassenstufe 9 keine Klassenarbeiten geschrieben. Die Beurteilung der Schülerinnen und Schüler erfolgt über die Unterrichtsbeiträge, d. h. die im Rahmen des Unterrichts gezeigten mündlichen, praktischen und schriftlichen Leistungen. Dies wären beispielsweise Beiträge im Unterrichtsgespräch, Referate oder Tests, auch das Experimentieren fließt in die Bewertung ein. Eigenständiges Denken der Schülerinnen und Schüler ist dabei deutlich höher gewichtet als Auswendiglernen. Im Anhang befindet sich eine Übersicht der Kriterien zur Bewertung der Unterrichtsbeiträge. In der **10. Klassenstufe** wird eine Klassenarbeit geschrieben, welche den Schülerinnen und Schülern verdeutlichen soll, wie Klassenarbeiten/ Klausuren im Fach Chemie in der Sekundarstufe II aussehen können.

In der **Sekundarstufe II** fließen neben den oben erwähnten Leistungen auch noch die Ergebnisse von Klausuren (KA) und alternativen Leistungsnachweisen (ALN) in die Bewertung ein. In der Regel sind die Klausuren 90-minütig. Wenn Chemie das Profilfach ist, werden zur Vorbereitung auf das schriftliche Abitur auch längere Klausuren geschrieben.

Die Klausuren sind folgendermaßen aufgeteilt:

Klassen-	Chem grundlegen		Profilfach Chemie				
stufe	1. HJ	2. HJ	Chemie 3 KA (90') dabei pro Halbjahr mind. eine KA 3 KA, dabei pro Halbjahr mind. eine KA, mind. zw 180'-KA Auch im Profilseminar sind pro Halbjahr jeweils ei ALN zu erbringen. 2 KA im ersten Halbjahr, dabei kann die erste KA 180' lang sein, die zweite KA ist 300' lang				
E-Phase	1 (90')	1 (90')	3 KA (90') dabei pro Halbjahr mind. eine KA				
Q1-Phase	1 (90')	1 (90')	Auch im Profilseminar sind pro Halbjahr jeweils ein				
Q2-Phase	1 (90')	1 (90')	-				

Differenzierung – Fördern und Fordern im Chemieunterricht an der KKS

- Fordermaßnahmen für besonders begabte SuS: Teilnahme an Chemiewettbewerben; Fakultativ nach Absprache mit den Lehrkräften Begabtenförderung
- Fördermaßnahmen für SuS mit hohem Förderbedarf: Teilnahme an der Hausaufgabenbetreuung oder Nutzung des Chemiebuches, in diesem befinden sich nach jedem Kapitel eine Übersicht "Auf einem Blick" und Übungsaufgaben mit Lösungen.

Chemieunterricht an der KKS – Kerninhalte und grundlegende Kompetenzen

Chemieunterricht in der Mittelstufe

Klasse 8		Die folgende(n) KKS-Zukunftskom jeweils schwerpunktmäßig geförd (1) Demokratie und Umwelt sch (2) andere Perspektiven nachvol (3) Verantwortung für mich und (4) eigenes sowie fremdes Wisse (5) Chancen erkennen und Probl	dert we ützen, Ilziehen meine en und	erden: und so Zukunf Nicht-V	ozial hai t übern	ndeln, ehmen	,
 Thema/ Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler 	Unterrichtsmethode/ Experiment	Fachbegriffe	(1)	(2)	(3)	(4)	(5)
Arbeiten wie ein Chemiker/Chemikerin Sicherheit im Chemieraum	- Cuabbild Sinds day Sablaggary						
 nennen Sicherheitseinrichtungen und Verhaltensregeln im Chemieraum/ -unterricht. können grundlegende Materialien/Glasgeräte benennen. 	 Suchbild "Finde den Fehler" zum Formulieren der Sicherheitsregeln 		X	X	X		
 Arbeit mit dem Gasbrenner bedienen den Gasbrenner selbstständig und sicher. stellen die leuchtende und die rauschende Flamme am Gasbrenner ein. untersuchen die Temperaturzonen der Brennerflamme. 	 Gasbrenner eigenständig entzünden und löschen Mit einem Magnesiastäbchen die Temperaturzonen der Flamme untersuchen 						

 führen erste Experimente sicher durch und werten diese aus. 					
 Einführung in Protokolle beschreiben den Aufbau eines Protokolls aus den Punkten Material, ggf. (Sicherheits-)Hinweise, Durchführung, Beobachtung und Deutung. unterscheiden zwischen Auswertung und Beobachtung. Stoffe und ihre Eigenschaften 					
 Stoffe besitzen charakteristische Eigenschaften beschreiben die Eigenschaften von Stoffen. entwickelnd Experimente zur Bestimmung ausgewählter Eigenschaften von Stoffen und führen diese durch. leiten aus den Stoffeigenschaften sinnvolle Verwendungen der Stoffe ab. 	Experimente zur Untersuchung der Eigenschaften	Brennbarkeit Löslichkeit Dichte Elektrische Leitfähigkeit Magnetisierbarkeit Aussehen (Farbe, Körnung,) Aggregatzustand (bei Raumtemperatur)	x	х	
Aggregatzustände und Teilchenmodell (etwa 4 Wocher	n)				
 Stoffen bestehen aus Teilchen erklären den Aufbau der Stoffe mithilfe eines Teilchenmodells. erklären den Vorgang des eigenständigen Vermischens von Stoffen mithilfe des Teilchenkonzepts. 	 Experiment Konzentrationsausgleich (Wasser dringt durch die Cellophanfolie zum Salz) (Existenz der Teilchen) Tee kochen (Bewegung der Teilchen, Diffusion) 	Teilchenmodell Diffusion			

 Aggregatzustände und Aggregatzustandsänderung beschreiben die Übergänge der Aggregatzustände mit Fachbegriffen stellen die Aggregatzustände auf der Teilchenebene dar. schließen von ihren Beobachtungen auf die Teilchenebene (Deutung). erklären die unterschiedlichen Eigenschaften eines Stoffes in unterschiedlichen Aggregatzuständen mit dem Teilchenmodell (Abstand der Teilchen zueinander, Bewegungsenergie der Teilchen, Anziehungskräfte zwischen den Teilchen). 	 Lösen eines Kaliumpermanganatkristalls in Wasser (ohne rühren) (Diffusion) Modellversuch mit Styroporkugeln Eiswürfel schmelzen und Wasser verdampfen lassen Kerzenwachs schmelzen und verdampfen lassen Brennspiritus im Luftballon verdampfen lassen Temperaturkurven beim Schmelzen von Stearinsäure aufnehmen Die SuS lassen Stearinsäure schmelzen und messen die Temperatur in festen Zeitabständen. Anhand dieser Daten erstellen sie eine Temperaturkurve. (ggf. Einsatz von Excel) 	fest, flüssig, gasförmig erstarren, schmelzen verdampfen, kondensieren sublimieren, resublimieren Siedetemperatur Schmelztemperatur		x	x
 Stoffgemische Stoffgemische unterscheiden zwischen Stoffgemischen und Reinstoffen. Können homogene und heterogene Stoffgemisches unterscheiden. 	 Stoffgemische aus dem Alltag untersuchen (Brausepulver, Salzlösung, Destilliertes Wasser, Tütensuppe, Milch) Stoffgemische herstellen 	Stoffgemisch, Reinstoff heterogene & homogene Stoffgemische Partikel vs. Teilchen Gemenge, Emulsion, Lösung, Suspension Schaum, Nebel, Rauch, Gasgemisch	X		

 können Stoffgemische anhand der Aggregatzustände der Reinstoffe ausgewählten Gemischtypen zuordnen. stellen Stoffgemische auf der Teilchenebene dar. stellen homogene und heterogene auf der Teilchenebene dar und erklären, warum diese sich in der Darstellung auf der Teilchenebene unterscheiden. Stofftrennung					
 Trennverfahren (Mögliche Kontexte: Tütensuppe, Salzgewinnung) nennen Trennverfahren. ordnen den Trennverfahren die genutzten charakteristischen Stoffeigenschaften für die Trennung zu. beschreiben die Durchführung der Trennverfahren und führen diese durch. planen aufbauend auf einer Hypothese ein Untersuchungsdesign zur Trennung eines Stoffgemische bzw. führen einen mehrschrittigen Trennungsgang durch. stellen Trennungsgänge in einem Fließdiagramm dar. 	 Planung und Durchführung zur Trennung des Gemisches (Sand, Sägespäne, Eisenpulver, Salz) Untersuchung von verschiedenen schwarzen, wasserlöslichen Stiften mit der Papierchromatografie Reinigung von verdünnter Tintenlösung oder Cola mit Aktivkohle 	Sedimentieren, Dekantieren, Eindampfen, Filtrieren Papierchromatographie, Destillation, Extraktion, Adsorption, Magnettrennung	X	X	X

o entwickeln basierend auf der eigenständigen				
Entwicklung eines Untersuchungsdesigns den				
Forscherkreislauf.				

Klasse 9 Klasse 9 Die folgende(n) KKS-Zukunf jeweils schwerpunktmäßig (1) Demokratie und Umwels (2) andere Perspektiven na (3) Verantwortung für mich (4) eigenes sowie fremdes reflektieren, (5) Chancen erkennen und			efördert schütze nvollzie und me /issen u	werde n, hen un ine Zuk ind Nicl	n: d sozial unft üb ht-Wiss	hande ernehn	ln,
Thema/ Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Chemische Reaktion (I)	Unterrichtsmethode/ Experiment	Fachbegriffe	(1)	(2)	(3)	(4)	(5)
 Stoffumwandlung benennen die Bildung neuer Stoffe als Merkmale chemischer Reaktionen. dokumentieren chemische Reaktionen mithilfe von Wortschemata. 	 Möglicher Kontext: Feuer und Flamme (s. Leitfaden S. 24) Experiment: Kupfer mit Schwefel Möglicher Kontext: Feuer und Flamme (s. Leitfaden S. 24) Exp.: Kupfersulfat und Wasser 	Edukte, Produkte, Analyse, Synthese, Element, Verbindung Wortschema	x			х	
 Energieumwandlung beschreiben die Umwandlung von chemischer Energie bei chemischen Reaktionen in andere Energieformen. 	 Möglicher Kontext: Feuer und Flamme (s. Leitfaden S. 24) Exp.: Kupfersulfat und Wasser Verbrennungsexperimente (Eisenwolle, Streichhölzer) 	Energiediagramm, exotherme und endotherme Reaktionen, chemische Energie, Aktivierungsenergie,	х			х	

 beschreiben, energetische Zusammenhänge bei chemischen Reaktionen. stellen die energetischen Verhältnisse bei chemischen Reaktionen mithilfe eines Diagramms dar. deuten die Aktivierungsenergie als Startenergie/ beschreiben die Aktivierungsenergie als Energie, die man benötigt, um einen Stoff in einem reaktionsbereiten Zustand zu versetzen. erklären den Einfluss eines Katalysators auf die Aktivierungsenergie. 		Energiegehalt von Stoffen, Energiebilanz, Katalysator Atom, Massenerhaltungssatz				
 Stoffe sind aus Atomen aufgebaut (Atommodell nach Dalton) unterscheiden chemische Elemente und chemische Verbindungen. unterschieden fachsprachlich Atome und Moleküle. erklären anhand des Atombegriffs den Unterschied zwischen chemischen Elementen und chemischen Verbindungen Massenerhaltung und Atomumgruppierung als Merkmal chemischer Reaktionen. 	 Chemische Reaktion II) Zerlegungen von Wasser, Elektrolyse von Wasser Verwendung von Legosteinen oder Knete (in der Sammlung) zur Verdeutlichung der Unterscheidung Verbindung, Element und Gemisch Bildung und Zerlegung von Silbersulfid, Alternativ Video (LV) 	Elemente vs. Verbindungen Atom, Molekül	x		х	

 erklären Veränderungen bei chemischen Reaktionen auf atomarer Ebene. beschreiben chemische Reaktionen als eine Atomumgruppierung. deuten die Erhaltung der Masse bei 					
chemischen Reaktionen mithilfe der konstanten Atomanzahl.					
Kern und Hülle der Atome & Systematische Anord	nung der Elemente im PSE				
 Elementsymbole können Atomen die Elementsymbole zuordnen. können Wortschemata in Reaktionsgleichungen überführen. 		Elementsymbol PSE		х	
 Atommasse geben die Atommasse in der Einheit unit an und können diese aus dem Periodensystem entnehmen. 		unit			
 Atome besitzen einen differenzierten Atombau. beschreiben den Aufbau der Atome mithilfe des Kern-Hülle-Modells nach Rutherford. beschreiben den Aufbau des Atomkerns. beschreiben den Aufbau der Atomhülle (Schalenmodell). 	 Elektrische Ladung, Luftballon aufladen Animation Streuversuch Rutherford https://chemie-interaktiv.net/ff.html Energiediagramm der lonisierungsenergien nutzen zur Erklärung des Schalenmodells EscapeRoom-Rätsel 	Schalenmodell nicht Energiestufenmodell Protonen Neutronen Elektronen Isotope Ionisierungsenergie			

			1 1	
o erklären, dass sich Atome einer Atomsorte				
hinsichtlich der Neutronenanzahl				
unterscheiden können (Isotope).				
Elemente lassen sich ordnen		Ordnungszahl		
o erklären die Ordnung der Elemente im		Periode		
Periodensystem mithilfe des Aufbaus des		Hauptgruppe		
Atomkerns und der Atomhülle.		Außenelektronen/Vale nzelektronen		
o geben Informationen zum Aufbau von		Nebengruppe		
ausgewählten Atomen mithilfe des PSE		, reacing appe		
an.				
 erklären die Veränderung der 				
Atomgröße innerhalb einer Periode/				
einer Hauptgruppe.				
Zwischen den Eigenschaften und der Struktur	Elementfamilien in Gruppenarbeit			
eines Stoffes besteht ein Zusammenhang	erarbeiten und sich gegenseitig vorstellen			
 SuS nutzen des PSE zur Vorhersage 	lassen			
ausgewählter Strukturen und	Experiment Flammenfärbung			
Eigenschaften -> Elementfamilien				
Salze/ Ionenverbindungen			<u> </u>	
Synthese von Salzen/ Ionenbildung	Nutzung von Papiermodellen zur	Edelgaskonfiguration	х	
 erklären die Bildung von Ionen durch 	Darstellung der Elektronenübertragung	Edelgasregel,		
Elektronenübertragung.		Oktettregel		
 definieren Oxidation als Abgabe von 		Anion, Kationen		
Elektronen und Reduktion als die		Oxidation, Reduktion		
Aufnahme von Elektronen.		Redoxreaktion Elektronenübertragung		
		Liektronenabertragung		

 verallgemeinern die Ionenbildung als Elektronenübertragung zwischen Metall- Atomen und Nichtmetall-Atomen. beschreiben den Unterschied zwischen Ionen und Atomen auf der Teilchenebene. stellen Ionen im Schalenmodell dar. 				
Eigenschaften von Salzen erklären die spezifischen Eigenschaften (Elektrische Leitfähig in wässrigen Lösungen, hart, spröde, hohe Schmelz- und Siedetemperaturen, kristalline Struktur) von Salzen mithilfe von lonen, lonengittern und elektrostatischen Kräften.	 Salzkristalle selbst züchten Eigenschaften der Kristalle anhand der selbstgezüchteten Kristalle überprüfen Zusammenhang Stoff- und Teilchenebene mithilfe eines "Puzzles" einander zuordnen. Nutzen von Knete zur Darstellung von lonengitter Thematisierung Bezeichnung "Natriumarm" auf Mineralwasserflaschen Fachsprache vs. Umgangssprache Experiment lonenwanderung Experiment elektrische Leitfähigkeit (Einsatz digitaler Messgeräte) von demineralisierten Wasser, Lösungen mit versch. Salzgehalten (vorherige Definition Nichtleiter anhand von Messwerten) 	Ionengitter Elektrostatische Anziehungskräfte		

	Metalle und Metallgewinnung					
•	riceme genen zinaangen eini	Möglicher Kontext: Metalle herstellen	Metallbindung,	х	х	
	 beschreiben und erklären die chemische 	mithilfe elektrischer Energie oder	Elektronengasmodell			
	Bindung in Metallen anhand von	Reaktion von Metallen mit				
	Beispielen.	Metallsalzlösungen (s. Leitfaden S. 28)				
	Stoffeigenschaften können mithilfe von	Nutzung von Animationen				
	Bindungsmodellen gedeutet werden.	https://chemie-interaktiv.net/ff.html				
	 beschreiben und erklären die 	•				
	Stoffeigenschaften:					
	elektrische Leitfähigkeit,					
	Wärmeleitfähigkeit und Verformbarkeit					
	mithilfe des Konzepts der Metallbindung.					
,	Metalle unterscheiden sich in ihrer Reaktivität.	Experiment: Eisennagel in	Edle und unedle			
	 können die Redoxreihe der Metalle 	Kupfersulfatlösung, Kupferblech in	Metalle			
	experimentell herleiten und anwenden.	Eisensulfatlösung				
	können die Vorgänge im galvanischen Element	Verbrennung von Eisen-, Kupfer- und				
	erklären.	Magnesiumspulver				

Klasse 1					en durc ozial har t übern Vissen r	ndeln, ehmen	,
 Thema/ Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler 	Unterrichtsmethode/ Experiment	Fachbegriffe	(1)	(2)	(3)	(4)	(5)
 Atome gehen Bindungen ein erklären die Entstehung von Elektronenpaarbindung in Molekülen. unterscheiden zwischen Ionen- und Elektronenpaarbindung. stellen Atome und Moleküle in der Lewis-Schreibweise dar und überprüfen anhand der Lewis-Schreibweise, ob für die Atome im Molekül die Edelgaskonfiguration erfüllt ist. wenden das EPA-Modell und/oder KW- Modell zur Erklärung der Struktur von Molekülen an. beschreiben den räumlichen Aufbau der Moleküle mithilfe geeigneter Modelle. 	 Molekülbaukasten Einführung Struktur-Eigenschaft- Beziehung, Kohlenstoffmodifikationen, Kontext: Diamanten aus Haustieren Ablenkung des Wasserstrahls 	Elektronenpaarbindung LEWIS-Schreibweise Einfach-, Zweifach- und Dreifachbindungen freie und bindende Elektronenpaare Kugelwolkenmodell (KW) Elektronenpaarabstoßung smodell (EPA) Elektronegativität polare und unpolare Elektronenpaarbindung Dipolmoleküle				X	

 nennen die Elektronegativität als Maß für die Fähigkeit eines Atoms Bindungselektronen anzuziehen. differenzieren zwischen polaren und unpolaren Elektronenpaarbindungen in Molekülen sowie Ionenbindungen auf Grundlage der EN. Moleküle II					
 Wasser ein besonderes Molekül erklären den Bau des Wassermoleküls mithilfe von Fachbegriffen. beschreiben die besonderen Eigenschaften von Wasser und erklären diese anhand der Struktur des Wassermoleküls. Erklären die Entstehung und Auswirkungen von Wasserstoffbrücken. erklären das Löseverhalten von Salzen im Wasser anhand zwischenmolekularer Wechselwirkungen beschreiben die Energetik eines Lösevorgangs von Salzen in Wasser 	Stationsarbeit Wasser (Itslearning)	Wasserstoffbrücken Dipol-Dipol-Kräfte Eigenschaften von Wasser: Oberflächenspannung, Siedetemperatur, Dichteanomalie, Löslichkeit (Hydrathülle, Lösungsprozess)	X	X	
Organische Chemie			,		
 Organische Stoffe lassen sich in Stoffklassen ordnen. 	Entscheidungsbaum zu Bindungstypen (Itslearning)Prävention Alkohol	homologe Reihe der Alkane und Alkanole	X	x	l

 unterscheiden anorganische und organische Stoffe. nennen Verbindung aus der homologen Reihe der Alkane und der Alkohole/Alkanole und unterscheiden die Stoffklassen. können die Entstehung und Auswirkungen von Van-der-Waals-Kräften erklären. nennen gemeinsame Eigenschaften der Alkane und der Alkohole erklären Stoffeigenschaften (Schwerpunkt Löslichkeit) anhand de.s Bindungstyps bzw. der zwischenmolekularen Wechselwirkungen (Van-der-Waals-Kräfte, Dipol-Dipol-Kräfte, Wasserstoffbrücken). 		intermolekulare Wechselwirkungen (Vander-Waals-Kräfte, Dipol-Dipol und Wasserstoffbrückenbindungen)			
Säuren und Basen					
 Säure-Base-Reaktionen als chemische Reaktionen verknüpfen Alltagserfahrungen mit chemischen Fachbegriffen und benennen Eigenschaften, Vorkommen von Säuren und Basen können unterschiedliche experimentelle Nachweise für Säuren und Basen anwenden. 	 Wiederholung von Formelschreibweisen, Bindungsarten und EN Systematische Untersuchung von Alltagsgegenständen und deren strukturierte Dokumentation (Kommunikationskompetenz) Vergleichen verschiedener Verfahren zur pH-Wert-Bestimmung (Bewertungskompetenz) 	Indikatoren pH-Wert Oxoniumion, Hydroxid-Ion Donator, Akzeptor Hydroxidionen Dissoziation in Wasser	X		X

 benennen Säuren als Protonenakzeptor und Basen als Protonendonatoren. (Teilchenkonzept nach Brönsted) erklären die Reaktion zwischen Basen und Säuren als Neutralisationsreaktion. wenden das Konzept der Elektronegativität auf Säure-Base-Reaktionen an. identifizieren in ausgewählten Donator-Akzeptor-Reaktionen die Übertragung von Teilchen. wenden das Konzept der Protonenübertragungsreaktion auf die Reaktion von Säuren und Basen mit Metallen an. 				
	 Entwicklung eines experimentellen Vorgehens zur systematischen Untersuchung von quantitativ verlaufenden Reaktionen (Erkenntnisgewinnung) Gewinnung von experimentellen Daten und anschließende Fehlerbetrachtung, (Erkenntnisgewinnung) 	Neutralisation Titration Mol Konzentration		

Chemieunterricht in der Oberstufe

In der folgenden Tabelle sind die Fachinhalte und Kompetenzen fürs *Profilfach Chemie* kursiv gedruckt und die Minimalanforderungen für das Fach Chemie **auf grundlegendem Niveau** fett gedruckt.

E-Jahrgang E-Jahrgang E-Jahrgang Die folgende(n) KKS-Zukunftskompto jeweils schwerpunktmäßig geförder (1) Demokratie und Umwelt schütz (2) andere Perspektiven nachvollzie (3) Verantwortung für mich und me (4) eigenes sowie fremdes Wissen (5) Chancen erkennen und Problem						ert werden: zen, ziehen und sozial handeln, neine Zukunft übernehmen, n und Nicht-Wissen reflektieren						
Thema/ Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler Themas Finführung in die ausgenische Chamie	(digit Arbeitsm Experii Materiall	ethoden, mente	Fachbegriffe	(1)	(2)	(3)	(4)	(5)				
Thema: Einführung in die organische Chemie												
Fossile Brennstoffe Kurze allgemeine Wiederholung Atombau, PSE							1	1				
Entstehung, Förderung (inklusive Fracking), Verarbeitung von Erdöl und				Х	Х	х		х				
 Erdgas erklären die Entstehung von Erdgas und Erdöl beschreiben, dass Erdgas und Erdöl Gemische aus verschiedenen Alkanen sind erläutern Verfahren zur Verarbeitung von Erdöl und Erdgas mithilfe der Stoffeigenschaften (s.u.) 												

•	Strukturen und Eigenschaften der Bestandteile fossiler Brennstoffe	Kontext Alkene:			х	
	(Alkane, Alkene)	Fruchtreifehormon,				
	o beschreiben und erläutern den räumlichen Aufbau	mögliche Erweiterung				
	o unterscheiden Einfach- und Mehrfachbindungen	Alkine				
	o beschreiben und erläutern den Aufbau der homologen Reihe der					
	Alkane	M: Übungsspiele:				
	ordnen den Namen, die Summenformel und die Strukturformel der	Klett, Schrödel				
	Alkane einander zu (Methan bis Eicosan)					
C	o erklären den Begriff Konstitutionsisomerie am Beispiel der Alkane					
C	 zeichnen anhand der Summenformel alle zugehörigen 					
	Konstitutionsisomere					
	benennen einfache organische Verbindungen mithilfe der Regeln der					
	systematischen Nomenklatur (IUPAC)					
	o nennen Verwendungen und Eigenschaften von Alkanen					
	o erläutern ausgewählte Eigenschaften (Siedetemperatur, Viskosität) der					
	Alkane mithilfe der Wechselwirkungen zwischen Molekülen (van-der-					
	Waals-Wechselwirkungen)					
	begründen anhand funktioneller Gruppe die Reaktionsmöglichkeiten					
	organischer Moleküle					
C	beschreiben den Mechanismus der elektrophilen Addition (Bromierung					
	als Nachweis von Doppelbindungen)					
C	 beschreiben den Mechanismus der radikalischen Substitution 					
	(Bromierung Alkane)					
C	o unterscheiden die Reaktionstypen Substitution und Addition					
•	Energetische Betrachtung von Verbrennungsreaktionen von Alkanen	U: Visualisierung der	х	х		Х
		Verbrennungsenthalpi				
		e (Examensstd. Ma)				

 erklären Veränderungen bei Verbrennungsreaktionen auf atomarer Ebene (Nachweisreaktionen von Kohlenstoffdioxid und Wasser) beschreiben die Wärme, die bei chemischen Reaktionen, die zugeführt bzw. abgegeben wird, als Reaktionsenthalpie (bei konstantem Druck) erklären die Energiebilanz chemischer Reaktionen durch die Aufspaltung und Ausbildung chemischer Bindungen oder die Aufhebung und Ausbildung von Wechselwirkungen zwischen Teilchen berechnen Standardverbrennungsenthalpien über Standardbildungsenthapien Treibhauseffekt, Treibhausgase unterscheiden zwischen den natürlichen und den von Menschen verursachten Treibhauseffekt vergleichen fossile Brennstoffe mit alternativen Energieträgern beurteilen die Nutzung alternativer Energieträger 	Exp.: Nachweis der Reaktionsprodukte mit Verbrennung im Standzylinder (EI)			
Alkohole, Aldehyde und Ketone				
unterscheiden die Stoffklassen der organischen Sauerstoffverbindungen				
(Alkohole, Aldehyde, Ketone) anhand ihrer funktionellen Gruppe				
benennen einfache Verbindungen der obigen Stoffklassen nach IUPAC- Nomenklatur				
Vorkommen, Eigenschaften, Verwendung von Alkoholen	Alkoholbrille (Bio)		х	
 beschreiben den Prozess der alkoholischen G\u00e4rung 	Website: Kenn dein			
 nennen die Nebenprodukte der alkoholischen G\u00e4rung (Fusel\u00f6le - 	Limit			
Isomerie der Alkohole, Methanolvergiftung)				

	0 0 0	beschreiben die physiologische Wirkung des Ethanols und die Verstoffwechslung (Überleitung zu Aldehyden) nennen Verwendungen und Eigenschaften von Alkoholen erklären ausgewählte Eigenschaften der Alkohole (Löslichkeit) mithilfe der Wechselwirkungen zwischen Molekülen (van-der-Waals-Wechselwirkungen, Dipol-Dipol-Wechselwirkung, Wasserstoffbrücken) leiten aus der Struktur der Moleküle die Eigenschaften der Alkohole ab (mehrwertige Alkohole – Ethylenglykol, Glycerin)			
•	Alc o	dehyde und Ketone ordnen einem gegebenem Alkohol die Begriffe primärer, sekundärer und tertiärer Alkohol begründet zu	Gute Übersicht der "Oxidationsreihe der Alkohole" Fokus SII, S.		
	0	geben Oxidationsprodukte von Alkoholen an	259		
		begründen die zugehörigen Oxidationsprodukte und deuten die Reaktion der Alkohole mit Kupferoxid als Elektronenübertragungsreaktionen nach dem Donator-Akzeptor-Prinzip bestimmen die Oxidationszahlen der organischen Sauerstoffverbindungen können ausgewählte Redoxreaktionen nachvollziehen z. B. Fehling Erweitern des Redox-Verständnis: Ladungsänderung nicht zwingend notwendig, auch die Veränderung von Oxidationszahlen wird als Reduktion/ Oxidation bezeichnet stellen Redox-Reaktionsgleichung auf nennen Nachweisreaktion zur Unterscheidung von Aldehyden und Ketonen (Silberspiegel oder Fehling)			
	•	Exkurs: Kohlenhydrate beschreiben den allgemeinen Aufbau der Kohlenhydrate	Schrödel SI (neu) gute Zusammenfassung		

 unterscheiden zwischen Aldosen und Ketose 				
o zeichnen Glucose und Fructose in Fischerprojektion				
Organische Säuren				
• Carbonsäuren				
 beschreiben und erläutern den Aufbau der Carboxylgruppe 				
 wenden die IUPAC-Nomenklatur zur Benennung von Carbonsäuren 				
an und zeichnen die Strukturformel dieser Moleküle (auch				
gesättigte und ungesättigte Fettsäuren)				
 wenden Struktur-Eigenschaftsbeziehungen bei den Carbonsäuren 				
an, um Eigenschaften anhand der Strukturformel vorherzusagen				
oder zu begründen				
 deuten Säuren-Base-Reaktionen als Protonübertragungsreaktionen 				
nach dem Donator-Akzeptor-Prinzip (Säure-Basen-Theorie nach				
Brönsted)				
 stellen Reaktionsgleichungen von Säuren mit Basen auf 				
 stellen korrespondierende Säure-Base-Paare auf 				
 erklären die Neutralisationsreaktion 				
pH-Wert	Einführung in die			
 beschreiben den pH-Wert als Maß für den Gehalt an Oxonium- 	Titration			
Ionen in einer wässrigen Lösung (hier Einführung Mol und molarer				
Masse, Konzentration)				
 stellen den Zusammenhang zwischen dem pH-Wert und der 				
Konzentration der Oxonium- und Hydroxid-Ionen der Teilchenebene				
dar				

	0	erklären den Zusammenhang zwischen der Polarisierung des				
		Wasserstoffatoms in der Carboxylgruppe und der Säurestärke				
	0	ordnen Carbonsäuren nach der Säurestärke anhand der				
		Strukturformeln				
	0	erklären die Stärke von Carbonsäuren mithilfe der				
		elektronenziehenden und elektronenschiebenden Effekte der				
		Substituenten				
	0	sortieren Säuren mithilfe der pK _S -Werte Säuren gemäß ihrer Stärke				
	0	berechnen die pH-Werte starker und schwacher Säure und Basen				
	0	erstellen und deuten Titrationskurven				
	0	können zentrale Punkte von Titrationskurven berechnen				
•	Chemi	sches GGW	Exp.:			
	0	beschreiben und erklären das chemische Gleichgewicht auf der	Stechheberversuch			
		Teilchenebene als dynamisches Gleichgewicht	Modell: "Apfelkrieg"			
	0	beschreiben das chemische Gleichgewicht auf Grundlage der				
		Reaktionsgeschwindigkeiten und der Stoßtheorie				
	0	formulieren das Massenwirkungsgesetz				
	0	machen anhand der Gleichgewichtkonstanten Aussagen zur Lage des				
		Gleichgewichts				
	0	wenden das Prinzip von Le Chatelier an, um die Gleichgewichtslage zu				
		beeinflussen				
	0	beschreiben den Einfluss eines Katalysators auf die				
		Aktivierungsenergie				
•	Exkurs	Aminosäuren				
	o be	schreiben Strukturmerkmale von Aminosäuren (Carboxyl- und				
	An	ninogruppe)				

		11" 1" = 1 6	T	1 1	I			
	0	erklären die Eigenschaften von Aminosäuren auf molekularer Ebene						
		(Zwitterionen)						
	0	beschreiben die stoffliche Zusammensetzung von Proteinen und erklären						
		den Aufbau von Makromolekülen aus Monomeren (Peptidbindung)						
Es	ster							
•	Fru	uchtester	Kondensation	х		х	Х	
	0	beschreiben den Aufbau der Carboxylgruppe bei den Estern						
	0	wenden die IUPAC-Nomenklatur zur Benennung von Carbonsäureestern						
		an und zeichnen die Strukturformel dieser Moleküle						
	0	formulieren die Reaktionsgleichung der Estersynthese bei der Vorgabe						
		der Edukte oder Produkte (Alkohol und Carbonsäure)						
	0	erläutern den Mechanismus der Estersynthese						
	0	beschreiben und erklären die Umkehrbarkeit von chemischen						
		Reaktionen						
•	Ex	kurs Fette				х	Х	
	0	beschreiben den Aufbau eines Fettmoleküls aus Glycerin und Fettsäuren						
	0	unterscheiden zwischen gesättigten und ungesättigten Fetten						
	0	bewerten Fette anhand von Kennzahlen						
	0	erklären Stoffeigenschaften (Aggregatzustand) der Fette anhand der						
		Kenntnisse über zwischenmolekularen Wechselwirkungen						
	0	Bewertung von Fetten anhand ihrer physiologischen Wirkungsweise in						
		Bezug auf die Molekülstruktur						
								<u> </u>

Q1-Jahrgang	jeweils sch (1) Demok (2) andere (3) Verant (4) eigene	le(n) KKS-Zukunftskomp werpunktmäßig geförde ratie und Umwelt schüt: e Perspektiven nachvollz wortung für mich und m es sowie fremdes Wissen en erkennen und Probler	ert wer zen, iehen u neine Z uund N	den: und sozi ukunft i icht-Wi	al hanc übernel	leln, nmen,	
Thema/ Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler	(digitale) Arbeitsmethoden, Experimente Materialhinweise	Fachbegriffe	(1)	(2)	(3)	(4)	(5)
Thema Q1.1 Biomoleküle gA Biomoleküle: Zwei Stoffklassen, möglichst Kohlenhydrate und Proteine eA Biomoleküle ca. erstes Quartal: Kohlenhydrate ausführlich; Aminosäure als Praktikum im PS	Literatur allgemein: Bas Kast: Der Ernährungskompass Mi Thi: Komisch alles chemisch						
Kontext: Ernährung							
 Ernährungsformen vergleichen verschiedener Ernährungsformen mit den Empfehlungen der Deutschen Gesellschaft für Ernährung (Analyse von Werbung und Artikeln in Zeitschriften, historische Texte, Berichte aus unterschiedlichen Regionen der Erde usw.). erarbeiten die Bestandteile der unterschiedlichen Nahrungsmittel, essenzielle Lebensmittelbestandteile (Informationen erschließen und aufbereiten). 	Erstellen eines Ernährungsprotokolls (Frühstück) Recherche von Inhaltsstoffen in Lebensmitteln mittels App (z.B. CodeCheck, NABU Siegelcheck) UChemie "Lebensmittelzusatzsto ffe"	Mikro, Makronährstoffe,	x		x	X	

 Analyse von Nahrungsbestandteilen bewerten Nahrungsbestandteile und klassifizieren diese systematisch (Auswertung von Daten). erläutern physikalischen und biologischen Brennwert und die Unterscheidung von Baustoff- und Energiestoffwechsel. bewerten die Vor- und Nachteile von Ernährungstrends im Hinblick auf Umweltfaktoren bei der Ernährung (argumentieren und kriteriengeleitet Meinungen bilden, reflektieren). 	Buch: Ernährungskompass Mi Thi: Komisch alles chemisch	Überblick über die Nährstoffgruppe n: Fette, Proteine, Kohlenhydrate, Brennwerte, essentielle Nahrungsbestan dteile	х	х	x
 Monosaccharide können Vorkommen, Eigenschaften und Nachweis der Glucose und Fructose erklären und auswerten. Strukturdarstellung von Kohlenhydraten stellen Molekülen der Monosaccharide mithilfe verschiedener Modelle dar, vergleichen und bewerten diese. erklären den systematischen Aufbau der Kohlenhydrate anhand der Ketten- und Ringstruktur. 	Geschmackstest: Süßkraft von Kohlenhydraten Exp.: Fehling (Wdh. E), Glucoseteststreifen Einsatz von Molekülbaukästen	Monosaccharide Fischer- Projektion, Haworth			
 Nachweise von Kohlenhydraten wählen zur Identifikation der Monosaccharide passende Nachweisreaktionen als Untersuchungsmethode aus, die der Hypothese angemessen sind und die interpretierbare Ergebnisse liefern. 	Auswertung von Fließdiagrammen	Hydrolysereaktio nen Glycosidische Bindung Vollacetalbildung Reduzierende/ nicht			

				reduzierende			
				Kohlenhydrate			
				Keto-			
				Endioltautomeri			
				e			
•	Isc	merien von Kohlenhydraten	Polarimeter	Mutarotation,		х	
	0	Unterscheiden und erklären die verschiedenen Isomerien.	(Demoexp.)	optische			
	0	erläutern die Identifikation mittels Drehwinkelbestimmung.		Aktivität			
	0	benennen systematisch Isomere und unterscheiden Formen der		Enantiomere, Diasteriomere			
		Konfigurationsisomerie (nur Profil).		Diasterioniere			
•	Ро	lysaccharide		Polysaccharide	х		
	0	vergleichen Energiegehalte von Mono-/Polysacchariden.		Amylopektin,			
	0	erklären den Aufbau von Makromolekülen aus Monomer-Bausteinen.		Amylose			
	0	vergleichen Stärke/Cellulose, Cyclodextrine im Aufbau.					
•	St	irke	Stationenlernen:				
	0	erklären die Nachweisreaktion Iod-Stärke-Reaktion und werten diese	Polysaccharide				
		aus.					
	0	leiten die Reaktion der hydrolytischen Spaltung von Polysacchariden ab.					
	0	bewerten Folie aus Stärke als nachwachsende Rohstoff und Ersatzstoff.					
Ar	nin	osäuren und Proteine			 		
•	Pr	oteine in Lebewesen			Х	Х	
	0	erklären die Bedeutung der Proteine für Lebewesen und in der					
		Ernährung.					
	0	beschreiben und erklären die Bedeutung der Aminosäuren für den					
		Baustoffwechsel.					
1					1		
	0	erklären den Begriff "essenziellen Aminosäuren".					

0	beschreiben und erläutern die Struktur von Aminosäure und Zwitterionen. führen Nachweise von Aminosäuren durch und erklären diese. merie von Aminosäuren erläutern die Konfigurationsisomerie, asymmetrische Kohlenstoffatome, Chiralität und optische Aktivität.	Ninhydrin als Nachweisreagenz
• Pro	führen geeignete Nachweisreaktionen durch und erläutern diese. beschreiben und erklären die Peptidbindung. erläutern die Primär- bis Quartärstruktur. erläutern die Denaturierung von Proteinen und erklären die Relevanz der Denaturierung in der Nahrungszubereitung. erklären die Hydrolyse von Proteinen (Stoffwechsel, Analyse von Proteinen).	Untersuchung verschiedener Lebensmittel Molekularküche (Schäume) Xanthoprotein, Biuret
0 0 0	erklären zentrale Begriffe und Zusammenhänge zur Säure-Base-Chemie aus E. erläutern pH-, pK _S - und pK _B -Wert. erläutern die Pufferwirkung von Zwitterionen. berechnen die pH-Werte von Pufferlösungen (Henderson-Hasselbalch-Gleichung. erläutern den isoelektrischen Punkt von Aminosäuren/Zwitterionen. erläutern die Elektrophorese. innschichtchromatographie erläutern die Funktionsweise einer Dünnschicht-chromatographie.	Titration von Aminosäurelsg. DC Unterscheidung tierischer und pflanzlicher Aminosäuregemische

o ermitteln und interpretieren Rf-Werte von				
Dünnschichtchromatographien.				
 Exkurs: Komplexverbindungen als Erklärung von Nachweisreaktionen 				
 beschreiben die Komplexverbindung als Bindung, bei der die 				
Bindungselektronen nur von einem der beiden. Bindungspartnern				
stammen (zwischen Metallkation und freien Elektronenpaaren eines				
Bindungspartners).				
Fette		·	•	·
 Aufbau von Fetten (Struktur-Eigenschafts-Beziehung) 				
 erläutern den chemischen Aufbau von Fetten (Wdh. E). 				
o erläutern die Estersynthese (Wdh. E).				
o bewerten Fette mit Hilfe von Kennzahlen (Iodzahl, Säurezahl).				
Bewertung von Fetten				
 vergleichen tierische und pflanzliche Fette. 				
Q1.2				
Heiß und kalt – Nutzung von thermodynamischen Effekten im Allta	g			
Enthalpie: Brennstoffe im energetischen Vergleich	Exp: Analyse von			
o können Reaktionsverläufe durch Beobachtungen in exotherme,	Wasserstoffperoxid,			
endotherme Reaktionen, mit oder ohne Aktivierungsenergie	Funktion chemischer			
unterteilen.	Kontaktlinsenreiniger			
o stellen energetische Verläufe von Reaktionen durch Graphen dar und				
deuten diese.	Bsp.			
 definieren die Innere Energie als Summe unterschiedlicher 	"Energieerzeugung"			
Energieformen, die nicht absolut sondern nur als Energiedifferenz	Windkraft,			
messbar ist.	Sonnenenergie,			
	Heizkraftwerke etc.			

	0	könnenden Unterschied zwischen Reaktionsenergie und Enthalpie auf				
		Grundlage der Reaktionsbedingungen benennen.	"Praktikum":			
	0	können den 1. HS Thermodynamik benennen und auf die Lebenswelt	Kalorimetrische			
		anwenden.	Messungen			
	0	können kalorimetrische Bestimmung von Verbrennungsenthalpien				
		eigenständig durchgeführt				
	0	berechnen die Änderungen der inneren Energie aus kalorimetrischen				
		Messungen.				
	0	berechnen molare Standardreaktionsenthalpien aus				
		Standardbildungsenthalpien zur Vorhersage energetischer				
		Energieverläufe.				
	0	verwenden den Satz von Hess als Hilfe zur Berechnung von				
		Standardreaktionsenthalpien.				
•	En	tropie:				
	0	können die Entropie als zusätzlichen energetischen Einflussfaktor auf				
		chemische Reaktionen benennen um zu erklären, warum auch				
		endotherme Reaktionen freiwillig ablaufen können.				
	0	erklären die Entropie als Maß für die gleichmäßige Verteilung				
		(Unordnung) von Energie und Teilchen eines Systems.				
	0	kennen den 2. HS Thermodynamik kennen und können diesen anwenden.				
	0	erklären die Zunahme der Entropie als Energieentwertung				
	0	berechnen Standardreaktionsentropien.				
•	Gil	bbs-Helmholz-Gleichung, freie Reaktionsenthalpie				
	0	können die Gleichung als Zusammenfassung der Einflüsse von Enthalpie,				
		Entropie und Temperatur auf den Reaktionsverlauf erklären.				
	0	können energetische Berechnungen durchführen.				

 können Ergebnisse als Hilfe zur Vorhersage zum Ablauf chemischer Reaktionen nutzen. 							
 Mögliche Kontext Irreversibilität von Verbrennung fossiler Brennstoffe Knick-Handwärmer Selbstkühlende oder selbsterhitzende Dosen/ Becher Energiespeicher für die Zukunft			x	X	x		X
 Bereitstellung elektrischer Energie heute wiederholen und vertiefen die Inhalte aus der Einführungsphase: Grundlagen der Energieumwandlung in den verschiedenen Kraftwerkstypen (Kohle, Erdgas, Müll, Nuklear, Wasser, Wind, Geothermie, Solar usw.), Unterscheidung zwischen "chemischer und mechanischer Energiegewinnung". können verschiedene Systeme im Hinblick auf Ökobilanz vergleichen. 			х		X	х	x
 Das Batterieprinzip können die Grundlagen der Mittelstufe zum Themengebiet Redoxreaktionen (Oktettregel, Ionenbildung, Redox-Begriff als Aufnahme- und Abgabe von Elektronen) anwenden. können die grundlegenden Prinzipien der Funktionsweise von galvanischen Zellen erklären. können eine galvanische Zelle konstruieren. können anhand der Spannungsreihe Reaktionsrichtungen vorhersagen. berechnen Zellspannungen U aus den Standardpotenzialen mithilfe der Spannungsreihe (Potenzialdifferenzen). 	Material zur Veranschaulichung an der Tafel in Form eines Atomrumpfmodells	korrespondieren de Redoxpaare	х				х

	0 0 0	erklären das Elektrodengleichgewicht über die elektrochemische Doppelschicht. Erklären des Einflusses der Konzentration auf das Halbzellenpotenzial. berechnen Halbzellenpotenziale in Abhängigkeit von den Ionenkonzentrationen bei Standardtemperatur mit der Nernst- Gleichung in der Form $E = E0 + Ig \ 0.059 \ z \ \{c(0x)\} \ \{c(Red)\}.$				
•		emplarische Betrachtung einzelner Batterien arbeiten in der Spannungsreihe mit auch mit Nichtmetallen (Sauerstoff und Wasserstoff).	Innenansicht einer Batterie Exp: Batteriemodelle: Zink-Luft, Lithiumbatterie			
•	"W	können Oxidationszahlen als Hilfsmittel zur Deutung von Redoxvorgängen verwenden (Wdh.). können exemplarisch die Funktion mindestens einer Brennstoffzelle erklären (z. B. Knallgas-Brennstoffzelle, Erdgas-Brennstoffzelle, Methanol- oder Ethanol-Brennstoffzelle).	Modellexperiment Fokus SII S. 194			
•		erklären die Elektrolyse als erzwungene Redoxreaktion; Umkehrung der Reaktionen einer galvanischen Zelle. erklären die Funktion exemplarisch ausgewählter Akkumulatoren (z. B. Bleiakkumulator, Lithium-Ionen-Akku oder moderne Akkumulatoren aus dem Bereich der Elektromobilität).	Material zur Veranschaulichung an der Tafel in Form eines Atomrumpfmodells	х	х	х
	0	können eine Elektrolyse durchführen.	Exp: Elektrolyse von Zinkiodid			

0	können den Zusammenhang zwischen Zersetzungsspannung und						
	Elektrodenpotentialen herstellen.						İ
0	können das Auftreten unerwarteter Elektrolyseprodukte durch die						1
	Überspannung erklären.						İ
0	können die Abhängigkeit der bei einer Elektrolyse abgeschiedenen Masse						l
	eines Stoffes von Stromstärke und Elektrolysezeit erläutern und						l
	berechnen (Faraday-Gesetze).						İ
0	erklären die Abläufe exemplarische ausgewählter technischer						l
	Elektrolysen (z. B. Aluminiumherstellung, Kupferraffination, Chlor-Alkali-						l
	Elektrolyse).						l
• V	ergleich und Bewertung unterschiedlicher Energiespeicher	AB Grundlagen der	х			х	Х
0	Können folgende Aspekte in den Vergleich einbeziehen:	Bewertung aus E.1					l
	Gemeinsamkeiten und Unterschiede von Batterie –						l
	Akkumulator – Brennstoffzelle						l
	Einsatzmöglichkeiten und -orte						l
	Energiedichte in Bezug auf Volumen oder Masse						İ
0	Gesichtspunkte der Nachhaltigkeit bei der Nutzung von						
	Energiespeichern						<u> </u>
Obe	rflächen schützen und funktionsfähig machen						
• K	orrosion und Korrosionsschutz	Kontext: offshore	х	T	T		х
0	erklären die elektrochemischen Vorgänge bei der Korrosion von Metallen.	Windparks					l
0	diskutieren Korrosion als volkswirtschaftliches Problem.						1
0	erklären und unterscheiden Methoden des aktiven und passiven						
	Korrosionsschutzes (Erklärung der Wirkungsweise von Opferanoden und						
	Schutzbeschichtungen).						1

lano – mehr als nur klein								
C±	wilther Figureshofts Poziohungan guf varschiadanan Sustamahanan			X	l		v	
	ruktur-Eigenschafts-Beziehungen auf verschiedenen Systemebenen			^			Х	<i>'</i>
0	können die Systemebenen Makro, Nano und Mikro unterscheiden.							
0	benennen die Besonderheiten von Nanopartikeln und nanostrukturierten							
	Oberflächen: Verhältnis Oberfläche zu Volumen.							
0	erklären den Lotuseffekt.							
0	können eine nanostrukturierte Oberfläche herstellen (z.B. Beschichtung							
	von Metalloberflächen).							
•	bewerten die Verwendung von Nanopartikeln, z.B. in Kosmetika, als							
	Korrosionsschutz usw							

Q2-Jahrgang	Die folgende(n) KKS-Zukunftskompetenzen sollen durch die UE jeweils schwerpunktmäßig gefördert werden: (1) Demokratie und Umwelt schützen, (2) andere Perspektiven nachvollziehen und sozial handeln, (3) Verantwortung für mich und meine Zukunft übernehmen, (4) eigenes sowie fremdes Wissen und Nicht-Wissen reflektiere (5) Chancen erkennen und Probleme lösen.									
 Thema/ Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler 	(digitale) Arbeitsmethoden, Experimente Materialhinweise	Fachbegriffe	(1)	(2)	(3)	(4)	(5)			
Thema Q2.1 Funktionale Stoffe Polymerchemie eA: wenn möglich bereits im letzten Quartal Q1 gA: in Q2.1 kann ausschließlich Polymerchemie unterrichtet werde, Grundlagen	der Farbstoffchemie sinc	l optional								
 Makromoleküle beschreiben den grundsätzlichen Aufbau von Makromolekülen anhand einer Wdh. natürlicher Makromoleküle E/Q1. treffen anhand der Molekülstruktur Vorhersagen über die Eigenschaften unterschiedlicher Makromoleküle (Thermoplast, Duroplast, Elastomer) (und andersherum). erläutern den Begriff Polymerisationsgrad als Kenngröße von Kunststoffen. 	Exp. Herstellung von Thermo- und Duroplasten Fokus S. 415, Exp. 17.07 u. 17.08 Polymermodelle mit Wollfäden nachbauen	Monomer, Polymer, Makromolekül Polymerisat	х		х	х	X			
 Die Vielfalt der Kunststoffe erläutern die Herstellung von Polyestern mithilfe des Mechanismus der Estersynthese. erläutern die Herstellung von Polyethylen mithilfe des Mechanismus der radikalischen Polymerisation. 	Synthese unterschiedlicher Kunststoffe	Polykondensat	x		х		х			

 Verarbeitung von Kunststoffen erklären und bewerten aufgrund von Kunststoffeigenschaften unterschiedliche Verarbeitungsverfahren. analysieren die Funktion und diskutieren die Risiken von Zusatzstoffen. Kunststoffe und Umwelt: Kritische Auseinandersetzung mit dem Nachhaltigkeitsaspekt von Kunststoffen erläutern den Aufbau und Einsatz von Biokunststoffe. beschreiben und erklären den Wertstoffkreislauf (Recycling). diskutieren die Gefahren von Mikroplastik. erläutern lösliche Kunststoffe und diskutieren ihren Einsatz. 	arbeitsteilige GA: 1. Verwertung von Kunststoffen 2.Biokunststoffe 3.Mikroplastik U Chemie Nr. 179 AB Bewertung E.1	x		
Aromaten	As severtaing 2.12		1	
 Strukturaufklärung von Benzol ermitteln die Molekülformel von Benzol. konstruieren Strukturformeln von Benzol. Benzol – ungesättigt oder gesättigt? erklären anhand des wellenmechanischen Atommodells s-Orbitale, p-Orbitale, sp³-Hybridisierung und sp²-Hybridisierung. 				
 definieren delokalisierte π-Elektronen. definieren konjugierte Doppelbindungen. stellen mesomerer Grenzstrukturen dar. 				
 Reaktionsverhalten aromatischer Verbindungen erklären, dass die Elektronenverteilung die Reaktivität eines Stoffes beeinflusst. erläutern den Mechanismus der elektrophilen Substitution. 				

		1	1	1	ı	
С	3					
С						
	Substitutionsprodukte des Benzols (z. B. Phenol und Anilin).					
С	erläutern den Mechanismus der S_E - und S_N -Reaktion.					
С	erläutern die Zweitsubstitution an Benzolderivaten und formulieren die					
	Strukturformeln der Produkte.					
С	erläutern die Bedeutung des Induktiven Effekts für die Reaktivität von					
	Molekülen.					
С	vergleichen die Reaktivität und den Mechanismus der folgenden					
	Reaktionsmechanismen: Elektrophile Addition, radikalische Substitution,					
	elektrophile Substitution.					
С	planen (z.B. mit SSS, KKK) und führen Synthesen durch.					
С	beschreiben Phenole und erklären deren Säure-Eigenschaften.					
С	beschreiben Gefahren durch Chemikalien mit Hilfe von Giftigkeit und					
	Arbeitsplatzgrenzwerte.					
Farb	stoffe					
• L	icht und Farbe	Spektralfarben				
С	beschreiben biologische Grundlagen der Farbwahrnehmung.					
С	erklären physikalische Grundlagen der Farbigkeit von Stoffen.					
С	erklären den Zusammenhang zwischen Farbe, Energie und Wellenlänge.					
С	erklären den Unterschied von additiven und subtraktiven					
	Farbmischungen in Bezug auf die physikalische Entstehung.					
	erklären die Unterschiede in der Entstehung von Farbigkeit: Absorption					
С					1	
С	und Reflektion oder Emission.					

	0	beschreiben Fluoreszenz, Phosphoreszenz und Chemilumineszenz auf				
		phänomenologischer Ebene unter dem Aspekt "Chemie und Energie".				
	0	erklären, dass Energie wird in Form von Licht sichtbar wird.				
•	M	olekülstruktur und Farbigkeit	Beispiel:Tintenkiller,	Chromophor		
	0	können die Theorie der delokalisierte π-Elektronen auf konjugierte	rote und blaue Tinte	'		
		Doppelbindungen anwenden und mesomerer Grenzstrukturen darstellen				
		(Verwendung des Orbitalmodells nicht nötig).				
	0	können Farbigkeit über die Absorption durch Anregung von Elektronen				
		und "HOMO zu LUMO" erklären.				
	0	können von der Molekülstruktur Rückschlüsse auf die Farbigkeit ziehen.				
	0	können den Zusammen zwischen Chromophor und absorbiertem				
		Lichtherstellen in Form von:				
		 "Je größer das chromophore System, desto geringer die benötigte Energie zur Anregung von HOMO zu LUMO, desto größer die Wellenlänge des absorbierten Lichts" 				
	0	erkennen auxochrome und antiauxochrome Gruppen und erklären deren				
		Einfluss auf die Farbigkeit von Molekülen.				
	0	erklären den Einflusses der Substituenten mithilfe der M- und I- Effekte.				
•	Fa	rbstoffe herstellen und nutzen	Synthese von und			
	0	können Farbstoffklassen anhand der Molekülstruktur zuordnen: O Azofarbstoffe, Triphenylmethanfarbstoffe, Antrachinonfarbstoffe können ausgewählte Farbstoffsynthesen durchführen: Azofarbstoffe, Anthrachinon, Triphenylmethanfarbstoffe	Färben mit Indigo Färben mit Methylviolett, vergl. Wolle, Baumwolle, Polyester Praktikum: Extraktion und Analyse von			
	0	stellen den Zusammenhang zwischen Textil-, und Farbstoffstruktur und passendem Färbeverfahren her, (Wdh. natürlicher und synthetische Makromoleküle; molekulare WW)				

0	können ein beispielhaftes Färbeverfahren durchführen.	Farbstoffen aus Obst,			
0	bewerten den Einsatz von Naturfarbstoffen für die Lebensmittelchemie,	Gemüse, Blättern			
	als nachhaltige Alternative für synthetische Farbstoffe.				
Q2.2	2 Chemie und Umwelt	l	L		
٩na	lytik allgemein				
· Ic	onennachweise				
0	können Stoffmengen und Konzentrationen berechnen (Wdh.).				
0	können das chemisches GGW mit MWG und le Chatelier erklären und				
	anwenden.				
0	können das Löslichkeitsgleichgewicht und Löslichkeitsprodukt KL				
	(qualitativ und quantitativ) berechnen.				
0	können die Ionenkonzentrationen bei Fällungsreaktionen berechnen.				
0	können zwischen qualitativen, halbquantitativen und quantitativen				
	Analysemöglichkeiten unterscheiden.				
0	bennen allgemeine Prinzipien von Nachweisreaktionen (Fällungsreaktion,				
	Farbreaktion, Flammfärbung, Gasentwicklung).				
0	können typische Anionen und Kationen experimentell nachweisen:				
	Chlorid, Hydrogencarbonat und Carbonat, Nitrit und Nitrat, Sulfat,				
	Phosphat, Natrium, Calcium, Kupfer, Eisen und Ammonium.				
• p	H-Analyse				
0	können Titrationskurven auswerten (schwache Säure/starke Base bzw.				
	schwache Base/starke Säure).				
0	können charakteristische Punkte berechnen (Anfangspunkt,				
	Halbäquivalenzpunkt und Äquivalenzpunkt).				

o können pH-Werte über die Konzentration Säure/Base und p K_s / p K_B -Werte berechnen.						
Umweltchemie Wasser						
 Kontext Wasser erklären den globalen Wasserkreislauf. erläutern des Prinzips von Stoffkreisläufen (P, N, C). 		х	х	х	х	х
 entwickeln Leitfragen im Kontext Chemie und Umwelt (Wasser). identifizieren möglicher Gewässerverschmutzungen und deren Ursachen (praktisch und theoretisch). 						
 praktische Durchführung der Analysen mit Analysekoffern unterscheiden zwischen qualitativen, halbquantitativen und quantitativen Analysemöglichkeiten. können Proben entnehmen und aufarbeiten. können Ionennachweise durchführen. können pH-Messungen durchführen. gehen kritisch mit Messergebnissen um (Fehlerbetrachtungen, Ermittlung der Genauigkeit der Messung). erkennen Nachweisgrenzen und deren Bedeutung für die Bewertung von Ergebnissen. 						
 Umgang mit Analyseergebnissen gehen Kritische mit Analyseergebnissen um. Entwickeln mögliche Handlungsoptionen zur Verbesserung der Wasserqualität. 					Х	Х